Global uniqueness in an inverse problem for time fractional diffusion equations
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness in an inverse source problem for a one-dimensional time-fractional diffusion equation
In this study, an inverse source problem for a one-dimensional timefractional diffusion equation is considered. An existence theorem based on the minimization of an error functional between the output data and the additional data is proved. Then it is showed that the unknown source function can be determined uniquely by an additional data u(0, t), 0 ≤ t ≤ T using an auxiliary uniqueness result ...
متن کاملA Uniqueness Result for an Inverse Problem in a Space-time Fractional Diffusion Equation
Fractional (nonlocal) diffusion equations replace the integer-order derivatives in space and time by fractional-order derivatives. This article considers a nonlocal inverse problem and shows that the exponents of the fractional time and space derivatives are determined uniquely by the data u(t, 0) = g(t), 0 < t < T . The uniqueness result is a theoretical background for determining experimental...
متن کاملOptimal results for a time-fractional inverse diffusion problem under the Hölder type source condition
In the present paper we consider a time-fractional inverse diffusion problem, where data is given at $x=1$ and the solution is required in the interval $0
متن کاملUniqueness in an Inverse Problem for One-dimensional Fractional Diffusion Equation
We consider a one-dimensional fractional diffusion equation: ∂α t u(x, t) = ∂ ∂x ( p(x) ∂u ∂x (x, t) ) , 0 < x < `, where 0 < α < 1 and ∂α t denotes the Caputo derivative in time of order α. We attach the homogeneous Neumann boundary condition at x = 0, ` and the initial value given by the Dirac delta function. We prove that α and p(x), 0 < x < `, are uniquely determined by data u(0, t), 0 < t ...
متن کاملSpectral Optimization Methods for the Time Fractional Diffusion Inverse Problem
An inverse problem of reconstructing the initial condition for a time fractional diffusion equation is investigated. On the basis of the optimal control framework, the uniqueness and first order necessary optimality condition of the minimizer for the objective functional are established, and a time-space spectral method is proposed to numerically solve the resulting minimization problem. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2018
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.09.032